A moist aquaplanet variant of the Held–Suarez test for atmospheric model dynamical cores
نویسنده
چکیده
A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held–Suarez (HS) test that was developed for dry simulations on “a flat Earth” and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the nonlinear dynamics–physics moisture feedbacks without the complexity of full-physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary-layer mixing, and the exchange of latent and sensible heat between the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of the National Center for Atmospheric Research (NCAR)’s Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics–dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. The new moist variant of the HS test can be considered a test case of intermediate complexity.
منابع مشابه
A Moist Benchmark Calculation for Atmospheric General Circulation Models
A benchmark calculation is designed to compare the climate and climate sensitivity of atmospheric general circulation models (AGCMs). The experimental setup basically follows that of the aquaplanet experiment (APE) proposed by Neale and Hoskins, but a simple mixed layer ocean is embedded to enable air–sea coupling and the prediction of surface temperature. In calculations with several AGCMs, th...
متن کاملIdealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs
[1] The paper introduces a moist, deterministic test case of intermediate complexity for Atmospheric General Circulation Models (AGCMs). We suggest pairing an AGCM dynamical core with simple physical parameterizations to test the evolution of a single, idealized, initially weak vortex into a tropical cyclone. The initial conditions are based on an initial vortex seed that is in gradient-wind an...
متن کاملSome Atmospheric Processes Governing the Large-Scale Tropical Circulation in Idealized Aquaplanet Simulations
The large-scale tropical atmospheric circulation is analyzed in idealized aquaplanet simulations using an atmospheric general circulation model. Idealized sea surface temperatures (SSTs) are used as lowerboundary conditions to provoke modifications of the atmospheric general circulation. Results show that 1) an increase in the meridional SST gradients of the tropical region drastically strength...
متن کاملA baroclinic instability test case for atmospheric model dynamical cores
A deterministic initial-value test case for dry dynamical cores of atmospheric general-circulation models is presented that assesses the evolution of an idealized baroclinic wave in the northern hemisphere. The initial zonal state is quasi-realistic and completely defined by analytic expressions which are a steady-state solution of the adiabatic inviscid primitive equations with pressure-based ...
متن کاملThe Tropical Response to Extratropical Thermal Forcing in an Idealized GCM: The Importance of Radiative Feedbacks and Convective Parameterization
The response of tropical precipitation to extratropical thermal forcing is reexamined using an idealized moist atmospheric GCM that has no water vapor or cloud feedbacks, simplifying the analysis while retaining the aquaplanet configuration coupled to a slab ocean from the authors’ previous study. As in earlier studies, tropical precipitation in response to high-latitude forcing is skewed towar...
متن کامل